%reload_ext tensorboard
%reload_ext autoreload
Energy Based Model¶
import os
import time
import math
import torch
import numpy as np
import torch.nn as nn
import pytorch_lightning as pl
import torch.nn.functional as F
import torch.distributions as tdist
from joblib import dump, load
from sklearn.decomposition import PCA
from pdmtut.core import GenerativeModel
from pytorch_lightning import loggers as pl_loggers
from regilib.core.dynamics.dynamical_state import DynamicalState
store_results = True
load_models = True
Introduction¶
Implementation¶
class EnergyBasedModel(pl.LightningModule, GenerativeModel):
class Decoder(nn.Module):
def __init__(self):
super().__init__()
self.dec1 = nn.Linear(2, 64)
self.decbn1 = nn.BatchNorm1d(num_features=64)
self.dec2 = nn.Linear(64, 128)
self.decbn2 = nn.BatchNorm1d(num_features=128)
self.dec3 = nn.Linear(128, 128)
self.decbn3 = nn.BatchNorm1d(num_features=128)
self.dec4 = nn.Linear(128, 64)
self.dec5 = nn.Linear(64, 3)
def forward(self, z):
x = F.elu(self.decbn1(self.dec1(z)))
x = F.elu(self.decbn2(self.dec2(x)))
x = F.elu(self.decbn3(self.dec3(x)))
x = F.elu(self.dec4(x))
x = self.dec5(x)
return x
def __init__(self):
super().__init__()
self.decoder = EnergyBasedModel.Decoder()
def sample_z(self, n_samples, n_zs):
# z ∈ [-1, 1]
return (torch.rand(n_samples, n_zs, 2)*2 -1).to(self.device)
def encode(self, X, n_steps=1000):
zs = self.sample_z(X.shape[0], 1).squeeze(1).requires_grad_(True)
_optimiser = torch.optim.SGD([zs], lr=0.1)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(_optimiser, 'min')
for _ in range(n_steps):
_optimiser.zero_grad()
# mse reconstruction error
y_star = self.decoder(zs) # B*S
mse = ((X - y_star)**2).sum(-1)
# loss
loss = mse.mean()
scheduler.step(loss)
loss.backward()
_optimiser.step()
return zs.detach().cpu()
def decode(self, X):
return self.decoder(X).detach().cpu()
def save(self, path):
torch.save(self, os.path.join(path, 'model.pt'))
def load(path):
return torch.load(os.path.join(path, 'model.pt'))
def save_exists(path):
return (
os.path.isfile(os.path.join(path, 'model.pt')))
def log_likelihood(self, X):
return -self.beta_free_energy(X).detach().cpu()
def sample_posterior(self, n_samples):
zs = self.sample_z(n_samples, 1).squeeze(1)
return self.decoder(zs).detach().cpu()
def energy(self, y, z):
# Expected format BxS where S is the amount of samples
y_star = self.decoder(z.view(-1, z.shape[-1])) # B*S
y_star = y_star.view(y.shape[0], -1, 3) # BxSx2
return ((y[:,None] - y_star)**2).sum(-1)
def beta_free_energy(self, y, zs=None, n_zs=100, beta=80):
if zs is None:
zs = self.sample_z(y.shape[0], n_zs)
E = self.energy(y, zs).view(-1, n_zs)
loss = -(1/beta) * torch.logsumexp(-beta*E, -1)
return loss
def fit_model(self, X, X_val=None, path=None):
start_time = time.time()
if path is None:
tb_logger = False
checkpoint_callback=False
else:
tb_logger = pl_loggers.TensorBoardLogger(path, version=1)
checkpoint_callback=True
trainer = pl.Trainer(
max_epochs=2000, gpus=1, logger=tb_logger,
checkpoint_callback=checkpoint_callback
)
trainer.fit(
self, train_dataloaders=X, val_dataloaders=X_val)
elapsed_time = time.time() - start_time
if path is not None:
with open(os.path.join(path, 'training_time.txt'), 'w') as f:
f.write(str(elapsed_time))
def training_step(self, batch, batch_idx):
batch = batch[0]
loss = self.beta_free_energy(batch).mean()
self.log('train_loss', loss)
return {'loss': loss}
def validation_step(self, batch, batch_idx):
batch = batch[0]
loss = self.beta_free_energy(batch).mean()
self.log('validation_loss', loss)
return {'val_loss': loss}
def configure_optimizers(self):
optimizer = torch.optim.Adam(self.parameters(), lr=1e-2)
return {
'optimizer': optimizer,
'lr_scheduler':
torch.optim.lr_scheduler.ReduceLROnPlateau(
optimizer, min_lr=1e-8, factor=0.5, verbose=True,
# todo: change back to 100
patience=300
), 'monitor': 'train_loss'
}
def __str__(self):
return 'ebm'
Experiment 1: swiss roll¶
import pyvista as pv
from pdmtut.datasets import SwissRoll
pv.set_plot_theme("document")
model_save_path = '../results/swiss_roll/ebm'
if store_results:
result_save_path = '../results/swiss_roll/ebm'
pv.set_jupyter_backend('None')
else:
pv.set_jupyter_backend('ipygany')
result_save_path = None
dataset = SwissRoll(n_samples=100**2, seed=11)
if load_models and EnergyBasedModel.save_exists(model_save_path):
model = EnergyBasedModel.load(model_save_path)
else:
model = EnergyBasedModel()
model.fit_model(
X=dataset.train_loader(batch_size=512),
X_val=dataset.validation_loader(batch_size=512),
path=result_save_path)
if store_results:
model.save(model_save_path)
model = model.eval()
%tensorboard --logdir ../results/swiss_roll/ebm
Input Representation¶
from pdmtut.vis import plot_representation
z = model.encode(dataset.X)
z_extremes = model.encode(dataset.y_extremes)
z_extremes = torch.cat([z_extremes, z_extremes[[1,2]]])
plot_representation(z.numpy(), index_colors=dataset.index_colors, z_extremes=z_extremes, interpolate_background=True, root=result_save_path)
Input Reconstruction¶
from pdmtut.vis import plot_reconstruction
z = model.encode(dataset.X)
x = model.decode(z)
mse = (dataset.unnormalise_scale(dataset.X) - dataset.unnormalise_scale(x)).pow(2).sum(-1).mean()
if result_save_path is not None:
with open(os.path.join(result_save_path, 'reconstruction.txt'), 'w') as f:
f.write(str(mse.item()))
mse
tensor(135.4865)
plot_reconstruction(dataset.unnormalise_scale(x).numpy(), dataset.index_colors, root=result_save_path)
Density Estimation¶
from pdmtut.vis import plot_density
from regilib.core.invertible_modules.bijective import AffineTransform
log_likelihood = model.log_likelihood(dataset.X)
# unnormalise the data and compute the change in density
un_normalise = AffineTransform(dataset._mean, 1/dataset._std)
data = un_normalise.forward(DynamicalState(state=dataset.X.clone().requires_grad_(True), log_prob=log_likelihood.clone()))
data_log_likelihood = data.log_prob.mean()
if result_save_path is not None:
with open(os.path.join(result_save_path, 'density.txt'), 'w') as f:
f.write(str(data_log_likelihood.item()))
data_log_likelihood
tensor(-7.6160)
plot_density(data.state.detach().numpy(), data.log_prob.detach().numpy(), root=result_save_path)
Generate Samples¶
from pdmtut.vis import plot_generated_samples
from regilib.core.invertible_modules.bijective import AffineTransform
generated_samples = model.sample_posterior(100**2)
generated_samples_log_likelihood = model.log_likelihood(generated_samples)
# unnormalise the data and compute the change in density
un_normalise = AffineTransform(dataset._mean, 1/dataset._std)
data = un_normalise.forward(DynamicalState(state=generated_samples.clone().requires_grad_(True), log_prob=generated_samples_log_likelihood.clone()))
plot_generated_samples(data.state.detach().numpy(), data.log_prob.detach().numpy(), root=result_save_path)
Interpolation¶
from pdmtut.vis import plot_interpolation
from scipy.interpolate import interp1d
z_extremes = model.encode(dataset.y_extremes)
uniform_state, uniform_log_prob, _ = dataset.sample_points_uniformly(n_samples=100**2, seed=11)
linfit1 = interp1d([1,20], z_extremes[:2].numpy(), axis=0)
linfit2 = interp1d([1,20], z_extremes[2:].numpy(), axis=0)
linfit3 = interp1d([1,20], z_extremes[[1,2]].numpy(), axis=0)
interpolated_points_1 = model.decode(torch.Tensor(linfit1(np.arange(1,21))))
interpolated_points_2 = model.decode(torch.Tensor(linfit2(np.arange(1,21))))
interpolated_points_3 = model.decode(torch.Tensor(linfit3(np.arange(1,21))))
/home/bawaw/.conda/envs/pdm_tutorial/lib/python3.8/site-packages/torch/functional.py:445: UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally at /opt/conda/conda-bld/pytorch_1639180588308/work/aten/src/ATen/native/TensorShape.cpp:2157.)
return _VF.meshgrid(tensors, **kwargs) # type: ignore[attr-defined]
plot_interpolation(
dataset.unnormalise_scale(interpolated_points_1).numpy(),
dataset.unnormalise_scale(interpolated_points_2).numpy(),
dataset.unnormalise_scale(interpolated_points_3).numpy(),
uniform_state.detach().view(100, 100, 3).permute(2, 0, 1).numpy(),
uniform_log_prob.numpy(), root=result_save_path
)
Extra¶
Sample generation with embedding colors¶
import pickle
import pyvista as pv
z = model.encode(dataset.X)
generative_samples = model.decode(z)
index_colors = dataset.color_map(z)
plotter = pv.Plotter()
plotter.add_mesh(
pv.PolyData(dataset.unnormalise_scale(generative_samples).detach().numpy()),
render_points_as_spheres=True, point_size=10,
diffuse=0.99, specular=0.8, ambient=0.3, smooth_shading=True,
scalars=index_colors,
style='points', rgb=True
)
plotter.camera_position = [(-65, 0, 65), (0, 0, 0), (0, 1, 0)]
_ = plotter.show(window_size=[800, 800])
if result_save_path is not None:
plotter.screenshot(os.path.join(result_save_path, 'z_colored_sample_reconstruction.png'))
pickle.dump({
'reconstructed_state': z,
'index_colors': dataset.index_colors
}, open(os.path.join(result_save_path, 'z_colored_sample_reconstruction.obj'), 'wb'))
Energy space¶
def plot_energy_space(model, axis, file_name=None, bound=15, steps=100):
# get uniform data surface
uniform_state, uniform_log_prob, _ = dataset.sample_points_uniformly(n_samples=100**2, seed=11)
# construct subspace
point_grid = list(torch.stack(torch.meshgrid(
torch.linspace(-bound,bound,steps), torch.linspace(-bound,bound,steps))).view(2, -1).unbind())
point_grid.insert(axis, torch.zeros_like(point_grid[0]))
point_grid_plane = torch.stack(point_grid, -1)
# compute energy for every point in subspace
energy_plane = model.beta_free_energy(dataset.normalise_scale(point_grid_plane)).detach()
# plot the plane
plotter = pv.Plotter()
plotter.add_mesh(pv.PolyData(point_grid_plane.detach().numpy()), render_points_as_spheres=False,
point_size=7.5, scalars=energy_plane , clim=[energy_plane.min(), energy_plane.max()])
plotter.add_mesh(pv.StructuredGrid(*uniform_state.detach().view(100, 100, 3).permute(2, 0, 1).numpy()), opacity=0.3, color='grey')
cam_pos = [0.01, 0, 0]
cam_pos[axis] = 60
plotter.camera_position = [cam_pos, (0,0,0), (0,1,0)]
_ = plotter.show(window_size=[800, 800])
if file_name is not None:
plotter.screenshot(os.path.join(result_save_path, file_name))
plot_energy_space(model, 2, 'energy_ambient_XY.png')
plot_energy_space(model, 1, 'energy_ambient_XZ.png')
plot_energy_space(model, 0, 'energy_ambient_YZ.png')